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Abstract Cage based deformation techniques aims to be an easy to use tool for
graphics modeling, texturing and animation. In this paper we describe the most im-
portant methods, their foundations, and the desirable properties that they should
satisfy. We also present a comparative to show the strong and weak points of each
one, taking into account their distinctive utilities. Finally, we discuss some applica-
tions that exploit cage capabilities in order to create a more complex deformation
system or to simplify other deformation techniques.

1 Introduction

Mesh deformation is a common process in geometry modeling and computer ani-
mation. Modeling can be very accurate, like in engineering design, or be flexible to
allow the artist to freely express his creative ideas. Similarly, in computer animation
we may want a realistic behavior, simulating physics, or rather a stylized and artistic
animation far from what is really possible. But, regardless of the preferred approach,
we need flexible tools for mesh deformation to achieve the desired results easily. In
the past years there have been many efforts in this direction, from different points
of view: Free-form deformation (FFD), generalized barycentric coordinates, Radial
Basis Functions (RBF), curve based deformation, skeletons and physics simulation
[1, 2, 3, 20, 26, 27, 29, 32]

Character articulation, also called rigging, has a significant place in the field of
mesh deformations; It is an important component in high-end applications used
in film and audiovisual content. Professional softwares, specially Softimage XSI,
Maya and 3DStudio, provide a wide range of character articulation methods. Some
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classic examples are Enveloping[20] and blend shapes[17], but there are also many
chainnable deformers that achieve amazing results.

Regarding character animation, there are a number of constraints that some of
the previous methods do not fulfill. Firstly we need a deformation method able to
work in real-time, for interactive applications, which limits the computation time.
Also, it is desirable to have a convenient and easy to use system which makes it
simple for a broad array of users to get quickly familiar with it. Cage based methods
are good candidates for this purpose. Even if nowadays these methods are not the
most used in professional animation applications, they have undergone significant
developments so that could push forward the usual rigging techniques.

Fig. 1 An object wrapped by a cage. In the left, the cage and the object are in rest pose for coordi-
nates computing. Then we can transform cage vertexes for producing a deformation in the volume
and consequently in the object. From [18]

Research in cage based methods were born at the beginning of feature film an-
imation. The pioneers were Sederberg and Parry[27], in 1986, with the Free Form
Deformation. This development become popular for several reasons. First, because
it offers a smooth and intuitive control over the character using limited parameters:
free form lattice control points. Besides, the model to be deformed does not need
to satisfy other geometric constraint apart from being inside the control lattice. On
the other hand, this kind of deformer has a well number of drawbacks: if the defor-
mations are complex, such as character articulated with several limbs, it becomes
difficult or even impossible to implement. A lattice will never fit perfectly the char-
acter shape, since the topologic rigidity of lattice is not flexible enough for that, and
combining several cages would be a hard task [16].

Next, we introduce the methods that will be the main line of discussion through-
out the paper. We need a cage which better fits the character shape. The first com-
plete environment that allow to do this is Mean Value Coordinates (a solution pro-
posed and developed simultaneously by to papers: Floater et al.[9] and Ju et al. [18],
in 2005). This method lead mesh deformation to the world of generalized barycen-
tric coordinates. The original concepts were introduced by F. Möbius in 1827, and
have been developed by many mathematicians since then [25, 33, 7, 6, 12, 24]. The
main point to solve is the relationship between a cage and its interior. If there is an
object inside a cage, we can deform it using the cage no matter the complexity of
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the object. For this purpose, Floater [8] proposed to use the mean value theorem, but
his formulation has some problems; the main one, being that the coordinates could
be negative, which will produce anti-intuitive and annoying results.

Even if this problem only applies to certain cases, the relevance of this issue
advises to discard this method for character animation, as Joshi [16] claims. He
proposed an alternative solution adopting a slightly different approach which does
not produce negative coordinates: Harmonic coordinates. This approach produces a
more local deformation, which is a very positive feature, but this also has drawbacks,
i. e. computation time and discretization accuracy.

Similarly, Lipman [21] proposes an improvement to Mean Value Coordinates that
leads to positive coordinates. He uses GPU visibility render techniques for analyzing
the volume inside the cage in order to cut off negative coordinates. In spite of the
improvements of this method, also has some smoothness problems with concave
shapes (as the original Mean Value Coordinates does).

Then, Lipman [22] realized that the surface details were not preserved, espe-
cially if the deformation is large, thereby suggesting that more data should be used
for being able to relate the cage to the object. While Mean Value Coordinates and
Harmonic Coordinates only use cage vertex positions, Lipman’s Green Coordinates
also uses face normals.

These are strictly cage based deformation methods, but there are other defor-
mation methods that use cages in other ways. This is the case for Biharmonic
weights [15] and subspace gradient domain deformations [14]. There have also been
improvements and new developments for using these concepts, such as volume-
preserving deformation [4], Cage-based deformation transfer [5] and skinning tem-
plates [19]

In the following section we are going to describe some basic concepts for deeper
understanding cage based methods, which we analyze afterwards in section 3. Then,
in section 4, the main conclusions are summarized and, finally, in the appendix we
collect some pseudocode algorithms that can be very useful for a better understand-
ing of these methods.

2 Barycentric coordinates and cage based deformation

Let us denote as a cage C any triangle mesh, or more generally a polyhedric mesh,
convex or not, which is closed, and that envelop a model to be deformed. For per-
fect model fitting the cage must be topologically flexible, and may be manually or
automatically generated [35]. As far as there is a well defined relationship between
the cage surface and its inside volume, the deformation applied to the cage will also
affect the volume, and therefore any object it contains. This procedure endows us
with an easy to use control handles (cage vertexes) to deform whatever complex
model inside the cage.
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2.1 Barycentric coordinates definition

The first mathematical approach defining a cage-to-model relationship was intro-
duced by Möbius in 1827 with barycentric coordinates for triangles [25]. The issue
was set out in the following terms: Which weights w1, w2, w3 must be given to the
vertexes A, B, C of a triangle to obtain P as the center of gravity of these weights?
Thus, point P is the barycenter, while the value of the vertex weights are the barycen-
tric coordinates of P for each vertex. Generalizing the problem, v can be considered
as the barycenter of points v1, . . . ,vn if and only if

v =
w1(v)v1 + . . .+wn(v)vn

w1(v)+ ...+wn(v)
. (1)

More precisely, these coordinates are homogeneous and need to be normalized
by

λi(v) =
wi(v)

∑i wi(v)
,

n

∑
i=0

λi(v) = 1. (2)

Where all the values λi are between 0 and 1. For the case of triangles, there is
also a relation between the coordinate wi (from vertex vi) of the interior point v and
the area of the triangle [v,vi+1,vi+2] (Fig. 2). Therefore, they are also called area
coordinates. The barycentric coordinates are a linear transformation of Cartesian
Coordinates over a triangle. Then, they vary linearly over the boundary, inside and
outside the triangle. This means that we can use it as an interpolation function φ

inside the polygon using the values defined at the vertexes φ(vi) (eq. 3)

φ(v) =
n

∑
i=0

λi(v)φ(vi). (3)

An example of this interpolation is Phong and Gouraud shading, a rendering al-
gorithms widely used in computer graphics [12]. These interpolations can also be
employed for geometry deformation. The coordinates define the relationship be-
tween the triangle vertexes and the triangle inside. After having distorted the trian-
gle vertexes, we can relocate the inside points constrained with the same relationship
(Fig. 2). In fact, by using identity as interpolation function φ(vi) = vi in equation 3,
we have an interpolation of the vertex space positions.

2.1.1 Barycentric coordinates generalization

The above formulation works well with simplexes, but a number of difficulties arise
when the issue is generalized to more complex polygons. Let us see now some
of the many approaches that have been tried to implement such a generalization.
The first attempt was proposed by Wachspress [33], who tried to deal with finite
element methods. The goal of this kind of methods is to solve equations, approxi-
mating continuous values as a set of discrete points, usually distributed into a grid.
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v = ∑i wi(v)vi v′ = ∑i wi(v)v′i

Fig. 2 The coordinates w1,w2,w3 define the relationship between v1,v2,v3 and the interior point
v. After having distorted the triangle vertexes, the inside points are relocated constrained with the
same relationship.

The Wachspress’s definition is only suited to the case of convex polygons. Other
studies have developed these methods for quasi-convex polygons [23] and arbitrary
polygons [31].

We distinguish quasi-convex polygons from convex ones to denote this kind of
polygons which are not convex but have a convex kernel, and therefore are convex
in some sense. The kernel of a polygon is the region K of a polygon Ω such that,
taking any point v∈K, for all vertex vi of the cage, the segment [v,vi] only intersects
with the polygon boundary at vi.

Fig. 3 The kernel of a polygon is the region K of a polygon Ω

Another approach to barycentric coordinates generalization is point cloud inter-
polation. The objective of this method is to define the interior volume of the point’s
convex hull [28] [10] [11].

Finally, we consider that the most interesting approach as far as this paper is con-
cerned, is piecewise surface interpolation [7, 8]. It is particularly relevant because it
enables volume deformation by cage control. In the same way that a triangle is able
to define a deformation for its support plane, a mesh can define one for its inside
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volume. The most interesting works in this area have been done in turn, ending in
Mean Value Coordinates, Harmonic Coordinates and Green Coordinates, that we
discuss in the next section, but first we will summarize the main properties of cage
based deformation methods.

2.2 Cage deformation desired properties

The final goal is to develop a procedure for producing natural and intuitive defor-
mations by using some control handle vertexes that form a cage. For this purpose,
some properties may be defined.

The first concept to be analyzed is deformation domain, which is the space region
influenced by the cage. To start with, deformation needs to be well defined inside
the mesh volume, without singular points. To this aim, we can constraint the object
to be totally inside the cage. However if only a part of the object is aimed to deform,
we need the cage to cover just that part, intersecting the object, which is a problem
when the domain is not well defined also at the boundary and outside the cage.
There are different approaches for outside coordinate’s extension from cage, as we
will see in the next sections.

Coordinates can be managed as a function, so that, if coordinates are well defined
(ensuring continuity all over the domain) we also expect smoothness, which means
continuity at first derivatives.

Interpolation, that is, coincidence values for the vertexes, is the main application.
As long as interpolation is ensured, the fact that φ(v) = 1 implies ∑

n
i=1 λi(v) = 1,

for all points v in the domain. This fact is known as affine invariance (eq. 3).
Besides, local deformation will be needed to restrict vertexes influence to their

neighborhood only at local state. The implication follows that a control point (cage
vertex) must cut off the influence of other control points over a part of the cage
volume, if it is placed between them.

In deformation methods, conformality is an important property that relates trans-
mission of local rotation transformations and, accordingly, surface detail preser-
vation. While conformal mapping maps infinitesimal spheres to other infinitesimal
spheres, quasi-conformal mapping is able to map infinitesimal spheres into infinites-
imal ellipsoids (with a certain ratio between axis). This property works towards a
natural deformation without losing shape semantic. (Fig. 4)

Another important property for character articulation is positiveness. This fea-
ture ensures that the coordinate values are positive in the entire domain, or at least
in some controlled parts. In as much as this is achieved, deformation will be suc-
cessfully intuitive.

Moreover, if we want to develop a real-time interactive deformation tool, com-
putation time needs to be reduced as much as possible. All the implementations
segment deformation process in two parts to break off the heaviest computations
into a pre-process (getting coordinates), so that the actual application of deforma-
tion is isolated in a simple computation to achieve real-time. Using GPU parallel
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Fig. 4 Rotation transformation is naturally applied keeping the object shape semantic, extracted
from [22]

techniques speed up the process, since transformations for each vertex can be done
simultaneously. In order to develop such a low time-consuming computations we
need to allocate in memory coordinates for every point of the object. Depending
on the method, a fast access to memory for many little sets of data (sets of vertex
coordinates) will be needed.

3 Mean Value Coordinates (MVC)

The first approach to MVC comes from Floater et al. [9] and Ju et al. [18]. Both
studies aimed at looking for an interpolation method for surfaces. Initially, Floater
[8] presented a 2D mean value coordinates over quasi-convex polygons, where the
coordinates were well defined inside and outside the polygon. Even if there was a
problem of discontinuity at boundaries, it could be solved easily [12] by extending
coordinates from the interior domain. In this case, the coordinates were well defined,
but it was not ensured that the values were necessarily positive for the entire domain.
In fact, positive coordinates can only be ensured inside the kernel of the polygon (a
convex or star-shaped one) [9]. Afterwards, Floater developed a 3D version of the
algorithm, but the negativity problem remained unsolved. Then, Ju et al. developed
another solution by using the Floater’s 2D approach but addressing the issue from a
slightly different point of view. Their attempt to solve the matter as a 3D interpolator
provided us with a solution which is more robust than the 3D one presented by
Floater (the pseudocode of Ju’s MVC is included in the appendix). In Summary,
these coordinates satisfy most of the properties enumerated in the previous section
[18] (mainly the fact of being a good interpolation method [12]) but the lack of
positiveness and locality are serious drawbacks for mesh deformation.

MVC uses mean value theorem to relate the points of a cage with its interior,
which is oriented by harmonic coordinates theory. Next, we present some concepts
that may help understanding the process, and also be helpful for discussing further
methods.
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3.1 Harmonic functions

The main problem to solve the desired cage-object relationship starts with a more
theoretical problem, the approximation of harmonic functions by piecewise linear
functions over triangulations, in such way that the injective property is preserved.
An harmonic function u is a function over the reals for which the second derivative
is continuous and satisfy Laplace’s equation

4u = 0⇐⇒ ∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 = 0. (4)

Dirichlet raised the problem of finding a relation between a continuous function
f over a boundary v∂Ω of a region Ω and its interior, by using a harmonic function
u assuming as known the values of f at v∂Ω . Basically, he explores whether such a
function u can exist and, if it does, if it is unique. The conclusion of such an attempt
is to establish the existence of a function with these characteristics and named his
solution as Dirichlet’s principle.

Following Dirichlet development, Floater approximates a solution of u that sat-
isfies the Dirichlet’s boundary conditions, u∂Ω = fi, by means of a linear piecewise
function uT over the triangulation. This leads us to a linear system where the values
of uT are at the inside vertexes of the triangulation T , (observe the similitude with
eq. (3))

uT (v) =
k

∑
i=1

λiuT (vi) (5)

3.2 Mean Value theorem

Floater carries out this approximation by using the mean value theorem, which states
that for a circumference B = B(v,r) ⊂ Ω (where r is the radius of a circumference
centered at point v, completely inside the region Ω ) and its circumference perimeter
Γ , the equation (6) approximates the function uT fitting the Dirichlet’s conditions,
as is expressed in equation (5)

u(v) =
1

2πr

∫
Γ

u(v∂Ω )dS. (6)

It is also relevant to analyze the geometric interpretation. Recall area coordi-
nates, we compute the i coordinate of interior point v as a ratio between the area
of the opposite sub-triangle (v,vi+1,vi+2) from vertex vi and the total triangle area.
Similarly, there is also a ratio to compute Mean Value Coordinates, this time be-
tween partial perimeter of a circumference centered at point v, obtained from the
projection of the cage segment [vi,vi+1] over the circumference, and the total cir-
cumference perimeter. Note that Floater, as an extension of his analysis, uses the



Cage based deformations: a survey 9

angles between segments [v,vi] and [vi,vi+1] to obtain the same ratio (Fig. 5 (a)).
It is easy to see that, by considering angles (or perimeters) with sign there may be
negative values for the coordinates. This is the case of concave polygons (Fig. 5 (b)).
The following expressions are derived by Floater to obtain Mean Value Coordinates
wi and their normal form λi :

λi =
wi

∑
k
j=1 w j

, wi =
tan(αi−1/2)+ tan(αi/2)

‖vi− v0‖
(7)

(a) (b)

Fig. 5 (a) parameter interpretation to obtain mean value coordinates. It is easy to see that if we
consider angles with sign there may be negative values for some coordinates, this is the case of
concave polygons as in (b). The angle α1 corresponding to segments [v,vi] and [vi,vi+1] is positive
while the angle α2 defined from segments [v,vi+1] and [vi+2] is negative.

In a similar way, mean value coordinates in R3 can be derived. In this case, the
coordinates are obtained as the area ratio over a sphere. With a sphere S centered at
point v, the coordinates of point v are equal to the ratio of the projected area of every
cage simplex over the sphere and the total sphere surface area. To get a closed form
expression, Floater uses other tools. He claims that, in fact, 2D coordinates can be
computed as a proportion of normals integration of the projected cage piece over
the circumference. Thus, we can integrate in 3D the normals over the partial sphere.
The integration of sphere normals over the entire sphere is equal to 0, from which
we can derive:

0 =
∫

S
n(p) =

∫
S
(p− v) = ∑

T∈T

∫
T ′
(p− v) (8)

and define the Spherical Barycentric Coordinates of every partial sphere that
comes from the cage triangles projection over the sphere. These coordinates can
be used as a uT approximation, which is what we need. The derivation of these
coordinates in a closed form expression is given by:
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0 =
n

∑
i=1

∑
vi∈T

µi,T ei =
n

∑
i=1

wi(vi− v) (9)

wi =
1
ri

∑
vi∈T

µi,T > 0 , µi,T =
β jk +βi jni j ·n jk +βkinki ·n jk

2ei ·n jk
(10)

Following the scheme of figure 6, where βrs ∈ (0,π) is the angle between two
segments [v,vr] and [v,vs], and nrs as the unitary vector of the face [v,vr,vs] pointing
into the tetrahedron. (r and s take the values of i, j,k)

Fig. 6 a) tetrahedron b) ”tetrahedron” defined by a spheric triangle. From [9]

Floater analyzes this case carefully and concludes that the equation (10) is not
well defined on the boundary. Besides, he proves that the coordinates can be ex-
tended to the boundary and beyond without losing of continuity and smoothness.
The closed form expressions proposed by Floater to obtain coordinates is the most
appropriate context for computing with parallel GPU techniques.

4 Harmonic coordinates (HC)

Joshi et al. [16] developed another method to set the coordinates successfully avoid-
ing some of the MVC drawbacks. Their concern was focussed on articulation in
feature film animation, so that the mentioned issues were annoying for that purpose.
The main problem is the fact that MVC are based in euclidean distances, which ne-
glects the visibility between cage points and object points. Then, the deformation
results are non-intuitive and require additional work to solve or to avoid the prob-
lem. Consider the case of figure 7: the cage’s left limb acts over the object’s left and
right limbs, resulting a non-expected displacement.

When analyzing further the matter, two important issues are found. Firstly, the
negative coordinates. The influence of the vertexes of the cage’s left limb delivers
positive values for points inside the cage’s left limb, but negative ones for the cage’s
right limb. Figure 8 show coordinate’s value distribution for a marked vertex.
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(a) Bind pose (b) Mean Value Coordinates (b) Harmonic Coordinates

Fig. 7 Comparative of MVC and HC in a conflictive deformation case of character articulation.
From [16]

The second issue is related to global influence: every cage vertex affects all object
vertexes producing a general deformation, even if control vertex and object vertex
are in opposite parts of the cage. Note though that in this case the influence is small.

(a) Mean Value Coordinates (b) Harmonic Coordinates

Fig. 8 Coordinate values for the blue marked vertex, all over the domain. Note that Mean Value
Coordinates takes two colors for coordinate representation: yellow for positive values and green
for negative ones. In Harmonic coordinates, the domain only complains cage interior, but values
are always positive. From [16]

Joshi exposes a local method, like heat diffusion, to decay control vertexes influ-
ence as it flows through the interior of the cage. The coordinates values inside the
cage have a top bound value that corresponds to control vertexes values, usually 1,
and decay to 0 as they are placed farther from the cage vertexes. Hence, all the co-
ordinates will be whithin the range [0..1], but are constrained to be inside the cage,
since the boundary breaks off the influence diffusion. This approach ensures posi-
tive coordinate values all over the domain: the cage interior, as shown in figure (8
(b)). Joshi’s approximation for piecewise linear function uT is the identity function,
the simplest harmonic function. It satisfies Laplace’s equation and can propagate the
values from boundary to cage interior as we want. By simply applying the laplacian
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operator, we get the desired results. Note that if the cage is a triangle the resulting
coordinates are the simple barycentric coordinates. Unfortunately, this process en-
closes the domain to cage interior, allowing no possible influence outside, so that
continuity at boundaries will only be preserved by Dirichlet boundary conditions.
Therefore, to get a smooth result, the cage needs to wrap completely the object with-
out intersections, or to trick the process for achieve some smoothness at boundaries.
An interesting feature of this method is that we can use interior control points that
behave like cage pieces. These will propagate the influence to the cage volume in
the same way as the boundary cage does. But in accordance with that, there will be a
lack of smoothness in deformation at points where the object intersects these interior
control points. Joshi presents an example that sorts out this problem by subdivision
surface objects. Subdivision control points ensure smoothness over the surface even
when the deformation applied to its control points is not smooth.

4.1 Implementation and its consequences

The method of applying a simple laplacian operator inside the cage works theo-
retically (with infinitesimal equations) but computationally we need to discretize a
volume big enough to cover the cage, and to compute a coordinate value for every
volume division cell. Joshi implemented some empirical tests to fit the best volume
subdivision and then propose dividing it into 2s cells, being s = 6 in the 2D version,
and s = 7 in the 3D case. To compute the coordinates he proposed the next pro-
cess: first, to mark every cell as it belongs to cage boundary (BOUNDARY), inside
(INTERIOR) or outside (EXTERIOR), and then assign cage vertex values to its cor-
responding cells. Next, throught an iterative process these values will be propagated
through the volume if cells are ”INTERIOR” marked, with a 4 cell-connected lapla-
cian operator in two dimensions, and 6 cell-connected one for 3D. Joshi proposes
some optimizations for reducing computation time, since convergence of laplacian
operators is too slow and requires many iteration-steps before it reaches the end
process condition. This condition consist of imposing a threshold that sets a top
bound for cell values variation between two laplacian operator successive steps. He
proposes to use the threshold t = 10−5

One of the main advantages of this approach is the fact that the inside object
can be changed whenever is needed, given that the coordinates are computed over
the grid cells and not over the object. The coordinates can be reassigned to the new
object with no more computation than reading values from the grid. Nevertheless,
saving the coordinates every cell is a waste of memory, unless the number of cells
is smaller than the number of object vertexes. On the other hand, discretization
causes some precision errors that need to be managed to deliver right deformation
outcomes. In some sense, the problem may be reduced if the implementation is done
by applying an adaptive resolution grid.
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5 Positive MVC (PMVC)

The Harmonic Coordinates procedure solves the negativity problem of Mean Value
Coordinates, but the fact that it lacks closed form expressions makes it very con-
suming time, even with optimizations. While MVC and Green Coordinates have
a closed form formulation that enables parallel computation, in the case of HC is
too hard to apply parallelism. To prevent negative values Lipman proposes apply-
ing a local Mean Value Coordinates which is accomplished with visibility testing
adopting GPU rendering techniques. The normals integration over the sphere (or
circumference) centered at point v is computed if the corresponding cage’s sim-
plex for the coordinate wi is viewed by point v. This process allows us to localize
the influence of each cage vertex. The results are very good (as Fig. 9 illustrates),
but there are some singularities, specially in concave polygons. Lipman trivializes
the problem claiming that such a distortion is not significant enough to be taken
into account, as his experiments prove. Yet, the problem arises as a consequence of
visibility computation, since the visibility region from point v (similar to a kernel
centered at point v) has a really sharp boundary. This fact introduces a little lack
of smoothness which as long as the vertex forms a concavity becomes a problem.
Thus, as a way to overcome this difficulty, Lipman proposes to split out the cage at
the points where this problem is presented.

Undeformed MVC PMVC HC

Fig. 9 This example, created by Lipman, shows clearly how negative value coordinates are pre-
sented on every kind of coordinates. From [21]

6 Green Coordinates (GC)

The main advantage of deformation methods based on cages are their simplic-
ity, flexibility and fastness. Every object vertex is deformed independently under
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these techniques, which are transparent to object surface representation and are
”discretization-error-free” in most of the cases. Unfortunately, the methods dis-
cussed previously do not preserve surface details, which is a drawback compared
to other deformation techniques (such as those based in surface differentials [30]),
especially if deformation is too big. Green Coordinates, developed by Lipman [22],
try to apply generalized barycentric coordinates taking into account this fact.

MVC and HC uses only cage vertex positions which, as Lipman noticed, induce
an axis independent deformation ( i.e., any translation over x axis of a cage vertex
does not translate into the object in the y and z axis, resulting an unnatural deforma-
tion (Fig. 10))

Fig. 10 Detail preservation is exhibited using Green Coordinates (on the right), where the details
adhere to the surface deformation and rotate accordingly. In the middle, the MVC result is depicted
where the details maintain their original orientation and therefore shear. From [22]

To achieve a natural deformation with shape preserving, Lipman adds cage faces
data to the deformation operator.

v = F(v; C) = ∑
i∈IV

ωi(v)vi + ∑
j∈IT

ψ j(v)n(t j) (11)

Being the cage C = (V,T ), where V are the cage vertexes and T the cage sim-
plexes (edges or faces). ωi values are the coordinates based in cage’s vertexes and
ψi are the ones based in the normal of the simplexes, which are the face data added.
And n(t j) is the normal outward unitary vector of the simplex t j. The deformation
over the object is obtained in this way:

v 7→ F(v; C′) = ∑
i∈IV

ωi(v)v′i + ∑
j∈IT

ψ j(v)s jn(t ′j) (12)

where v′i and t ′j are the modified vertex and faces of C′ respectively. The ex-
pression introduces a new term {s j} j∈IT to ensure some properties such as scale
invariance. The result is very good as it preserves better and more natural than other
methods the object shape and details (Figs. 4, 10, 12) producing a conformal map-
ping in 2D and quasi-conformal in 3D.
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6.1 Coordinates derivation

To obtain closed form expressions Lipman realizes that the harmonic functions also
follows the Green’s theory, thereby permitting to apply the third Green identity to
solve the problem.

u(v) =
∫

∂D

(
u(ε)

∂G(ε,v)
∂n(ε)

−G(ε,v)
∂u(ε)
∂n(ε)

)
dσε (13)

where ε is a point over the surface and G is the fundamental solution of the
Laplace equation, which can be solved by

G(ε,v) =
1

(2−d)Ad
‖ε− v‖2−d dimension d ≥ 3 (14)

G(ε,v) =
1

2π
log‖ε− v‖ dimension d = 2 (15)

where Ad is the area of a unit sphere in Rd , which in the 3D case is equal to 4π . By
deriving these equations, we obtain the closed form expression of the two coordinate
sets for each object vertex, ωi(v) and ψ j(v), which are used in the equation (12) to
obtain the deformation.

ωi(v) =
∫

ε∈N{vi}
Γk(ε)

∂G
∂n

dσε , i ∈ IV (16)

ψi(v) =−
∫

ε∈t j

G(ε,v)dσε , j ∈ IT (17)

where N{vi} is the neighborhood 1-connected vertexes of vertex v, which are
points used for computing Γk(ε), a linear combination to get ε depending on the
vertexes of N{vi}, in such way that it satisfies ε = ∑

d
k=1 Γk(ε)vk.

The scale factor s j depends on the growing or decreasing of every cage simplex,
and is computed in real-time when the deformation is applied:

s j = ‖t ′j‖/‖t j‖ in 2D case. (18)

s j =

√
‖u′1‖2‖u2‖2−2(u′1 ·u′2)(u1 ·u2)+‖u1‖2‖u′2‖2

√
8area(t j)

in 3D case. (19)

where vectors u1 and u2 define the edges of the triangle t j, and where u′1 and u′2
are the corresponding edges of the modified cage triangle t ′j. This parameter ensures
a natural deformation, which can though be modified to distort slightly the uniform
scaling (see the pseudocode in the appendix)

Lipman has studied the existing distortion in MVC, HC and GC, with the ratio
σmax(v)
σmin(v)

, where σmax(v) and σmin(v) are the maximum and minimum singular value of



16 Jesús R. Nieto, Antonio Susı́n

the differential F (jacobian matrix) at point v. Any map with a top bounded distortion
is named quasi-conformal, but only Green Coordinates present such upper bound
(except in some degenerated cases). MVC and HC distortions are proportional to
the deformation applied.

Fig. 11 There are two successive deformations applied to the same object using all methods. The
graphics show the distortion error accumulation at every deformation. Only GC presents a top
bounded error. From [22]

The coordinates expressed in equations 11, 12, 16, 17 are smooth and well de-
fined all over its limited domain: inside the cage. Besides, ωi(v) as a function (eq.
16), present derivate discontinuities over the simplexes at vertexes intersections and,
therefore is not smooth at the boundaries. In fact, this function cannot be used as a
surface interpolation method. In spite of that, it seems to be a really good system
for character articulation. Lipman does not mention anything about the negativity
of his coordinates, but attending to the corresponding closed expressions, we expect
positive values at the entire domain.

6.2 Outwards cage extension

The lack of smoothness introduced by the mentioned discontinuities at the bound-
aries entails limitations for the expressed formulation to be inside the cage. That is
why Lipman adds some terms to extend the inside coordinates to reach beyond the
cage. He considers the outside region as a set of subregions linked to some sim-
plexes. Whenever an object crosses through a simplex, the whole part of the object
that is outside the cage will be affected by the transformations of this simplex in
the way of affine transformations. Then, a set of simplexes that works with the same
similarity transformation could be used as a unique simplex that propagates a unique
affine transformation outside the cage. Therefore, we will compute as many affine
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transformations as separated parts of the object are placed outwards the cage. (Fig.
12)

(a) Bind pose (b) Green coordinates (c) Mean Value Coordinates

Fig. 12 GC cage deformation affects only center fingers of the model, leaving deformation-free
the rest of the model. MVC affect all the model with a natural extension of the coordinates, but
producing unwanted results. From [22]

7 Other developments of cage based methods

There are two early approaches of barycentric coordinates. The first one, presented
by Hormann and Sukumar[13], is called Maximum entropy coordinates (MEC).
These coordinates are non-negative for arbitrary polytopes, are smooth inside the
domain, and can be computed locally at any point v inside the cage like MVC and
GC, but they are only defined inside the convex hull of the polytope, and not every-
where in Rd . MEC do not present a significant improvement over the already dis-
cussed methods. Weber [34] presents another kind of coordinates named Complex
Barycentric Coordinates. This interesting approach reformulates the barycentric co-
ordinates definition with expressions based in complex numbers. Unfortunately, it
only works for 2D, and seems to be very difficult to be extended to a higher dimen-
sion.

There are some studies that make use of cage based methods and reach further.
We have already discussed direct cage based deformation, but enriching a more
complex behavior to this deformation will be interesting. Since the cage provides a
simplified version of an object for simpler deformation, it enables computing com-
plex constraints over the object with a simpler computation over the cage. Actually,
this constraint assignment is further complex, we should apply constraints to the ob-
ject rather than to the cage. Therefore, in a previous step, we group object constraints
on cage vertexes for collapse computations. Generalized barycentric coordinates can
do this for us. An interesting contribution in this regard is the one made by Cervero
el al.[4], who develop a method for object volume preservation over any kind of gen-
eralized barycentric coordinates. Volume preservation is a highly esteemed skill for
creating believable deformations in character animation. Another paper that follows
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such kind of scheme is Huang et al.[14], in which object deformation is obtained
by subspace gradient domain techniques constrained by some conditions. They uses
this constraint grouping method for improving the computations which would not
otherwise be made in real or at least close-to-real time.

There is still another interesting work that has a close relationship with the
essence of cage based methods: biharmonic coordinates [15]. The goal of all the
mentioned methods consist of defining a volume from its cage surface, in the case
of biharmonic coordinates the cage is the object itself. As long as we have a good
knowledge of the volume (the relationship between points within) we will be able
to process deformations by modifying some points inside or over the surface while
preserving these relations as a constraint. Control points could be vertexes, segments
or faces. Besides, they can be inside, on the surface or outside the object. These co-
ordinates, properly created, generate smooth deformations everywhere and can be
used with other character articulation tools, such as point deformers, skeletons and
cages.

Animation transfer using cages is another approach that also uses generalized
barycentric coordinates [5]. Whenever for the cases in which two characters are
using exactly the same cage (or different cages but with the same cage topology),
every deformation applied to one cage can be translated into the other one easily. A
different approach pursuing a similar goal is the one proposed by Ju et al.[19]. They
use templates, as cage predefined setups, for applying similar animations to several
characters easily.

8 Conclusions

In this paper we have described cage based deformation methods and some of the
applications that exploit their utility. Each of these methods has strong and weak
points, which are more or less relevant depending on the purpose. In the following
section, we discuss the most significant points in a schematic way, as a summary
of the concepts previously exposed. In the appendix we collect some pseudocode
implementations, extracted from their corresponding papers, that could be useful
for further clarifying these concepts.

8.1 discussions

The three methods described have been developed by gradually approximating the
issue. Floater [9] first proposed a generalization for barycentric coordinates, by in-
troducing harmonic functions theory, which proves mean value theorem. The main
purpose of Mean Value Coordinates was to interpolate values from some points over
a surface into its volume (i.e. vertex color). The same formulation is used to inter-
polate the space position of v based on cage vertex positions. Then, a cage could
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Table 1 Cage based methods properties comparative

Property Mean Value Coords Harmonic Coords Green Coords

Cage topology Triangles (vertex) No matter (vertex) Triangles
(vertex + normal)

Conformality No No conformal(2D)
quasi-conformal(3D)

Interpolation Boundary + inside Inside Inside

Closed formulation Yes No Yes

Control point influence Global
(euclidean distances)

local Global

Positiveness No Yes Yes

Outside cage extension natural formulation ex-
tension

No Segmented affine trans-
formation

be created wrapping a model, and deform the model maintaining the same inter-
polation values (coordinates) before and after the cage transformation. Note that
until this point there have been used only point data to compute the interpolation,
regardless of the cage topology. This is important since the lack of data will cause
problems like negative coordinates and no-local deformations. These drawbacks are
specially annoying for character animation. The Harmonic Coordinates approach
solves these problems by adding more data such as intra-cage-space point relations,
but to satisfy the neighboring relationships at the time of computing the coordinates,
is too time and memory consuming. On the other hand, grid discretization process
proposed for HC computation is very flexible for character articulation because we
can reassign coordinates to different models, composed with a unique mesh or in
several parts, without recomputing anything else, provided they use the same cage.
Green Coordinates was born as a solution of MVC and HC drawbacks, taking into
account also surface details preservation. To achieve it, is added more data into the
computation (cage simplexes normal) for describing better the behavior of deforma-
tion at surface, and translate it accordingly to the interior, producing a conformal or
quasi-conformal mapping. On table 1 we summarize the features that characterize
each method.

MVC are the best solution for value interpolation, given that are well defined
inside the volume and over the surface, and their simple closed form expressions
encourages to use they in the fastest real-time applications, specially if they are
computed by GPU techniques. The fact of having negative values and global defor-
mation makes this method less interesting to character articulation.
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HC is a good solution for character articulation, specially to add a specific and
controlled deformation to a part of an object, due to its flexibility to control influ-
ence propagation. Although we must take into account the smooth discontinuities at
boundaries to achieve a good overcome. In a rigging process is really valuable that
the model could change after the cage creation and coordinates computation, so that
HC become a better solution in that cases.

Finally, GC is the best approach for general purpose in character articulation,
since surface detail preservation with few control points makes it effective and easy
to use. Its formulation is more complex than the other two methods, so that the
deformation application will be slower. Besides, its global deformation is a small
drawback that must be solved in further research.

We present a table for analyzing the preprocessor computation time. It has been
prepared by a non-optimized implementation of the MVC, HC, and GC papers dis-
cussed. The timings were measured on a 2.8 Ghz Quad-Core Intel Xeon with 4GB
of RAM and expose clearly that MVC is the fastest algorithm, followed by GC
with a near to 5 times factor, and far behind, the HC with several magnitude orders
over. Note that while MVC and GC increases time computation proportionally with
model and cage complexity, HC depends on the grid size, specifically the INSIDE
marked cells count.

Table 2 Cage based methods, preprocessor computation time comparative (in seconds)

Model model model cage cage MVC HC GC
name vertexes faces vertexes faces

Column 2202 4400 24 44 0.051 31.905 0.241

Bust 255358 510712 32 60 8.232 229.534 38.348

Horse 19851 39698 90 176 1.614 513.549 8.692

Acknowledgements We are grateful to Pedro Garcı́a, John Grieco and Guillermo Posadas for
helping us to enrich the text with their corrections. This work was partially supported by TIN2010-
20590-C02-01.

Appendix

First, we expose Green coordinates pseudocode, extracted from Lipman’s paper
[22]. The 2D and 3D version for deforming object vertexes Λ ⊂ Cin. We have
changed φi(v) from the original paper by ωi(v) to keep coherence all over the doc-
ument. We note that for exterior or boundary points one should add to these coordi-
nates the {αk} and β as is introduced in subsection 6.2, and explained in depth in
section 4 of Lipman’s paper. Note that αk and β also posses a simple closed-form



Cage based deformations: a survey 21

formula employing the regular barycentric coordinates in triangles (3D) or edges
(2D).

2D version of Lipman’s Green Coordinates.
================================
Input: cage C = (V,T), set of points Λ = {η}
Output: 2D GC ωi(η), ψ j(η), i ∈ IV , j ∈ IT ,η ∈Λ

/* Initialization
set all ωi = 0 and ψi = 0
/* Coordinate computation
foreach point η ∈Λ do

foreach face j ∈ IT with vertices v j1,v j2 do
a := v j2− v j1 ; b := v j1−η

Q := a·a ; S := b·b ; R := 2a·b
BA := b·‖a‖n(t j) ; SRT :=

√
4SQ−R2

L0 := log(S) ; L1 := log(S+Q+R)

A0 := tan−1(R/SRT )
SRT

A1 := tan−1((2Q+R)/SRT )
SRT

A10 := A1−A0 : L10 := L1−L0
ψ j(η) :=−‖a‖/(4π)[(4S− R2

Q )A10+ R
2Q L10+L1−2]

ω j2(η) := ω j2(η)− BA
2π
[L10

2Q −A10 R
Q ]

ω j1(η) := ω j1(η)− BA
2π
[L10

2Q −A10(2+ R
Q )]

end
end
——————————————————–
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3D version of Lipman’s Green Coordinates.
================================
Input: cage C = (V,T), set of points Λ = {η}
Output: 3D GC ωi(η), ψ j(η), i ∈ IV , j ∈ IT ,η ∈Λ

/* Initialization
set all ωi = 0 and ψi = 0
/* Coordinate computation
foreach point η ∈Λ do

foreach face j ∈ IT with vertices v j1,v j2,v j3 do
foreach l = 1,2,3 do

v jl := v jl−η

end
p := (v j1·n(t j)n(t j))
foreach l = 1,2,3 do

sl := sign(((v jl− p)× (v jl+1− p))n(t j))
Il := GCTriInt(p,v jl ,v jl+1,0)
IIl := GCTriInt(0,v jl+1,v jl ,0)
ql := v jl+1× v jl
Nl := ql/‖ql‖

end
I :=−∑

3
k=1 skIk

ψ j(η) :=−I
w := n(t j)I +∑

3
k=1 NkIIk

if ‖w‖> ε

foreach l = 1,2,3 do
ω jl(η) := ω jl(η)+

Nl+1·w
Nl+1·v jl

end
fi

end
end

proc GCTriInt(p,v1,v2,η)

α := cos−1
(

(v2−v1)(p−v1)
‖v2−v1‖‖p−v1‖

)
β := cos−1

(
(v1−p)(v2−p)
‖v1−p‖‖v2−p‖

)
λ := ‖p− v1‖2sin(α)2

c := ‖p−η‖2

foreach θ = π−α , π−α−β do
S := sin(θ) ; C := cos(θ)

Iθ := −sign(S)
2

[
2
√

ctan−1
( √

cC√
λ+S2c

)
+
√

λ

(
2
√

λS2

(1−C)2

(
1− 2cC

c(1+C)+λ

√
λ 2+λcS2

))]
end
return−1

4π
Iπ−α − Iπ−α−β −

√
cβ

end
——————————————————–
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Harmonic Coordinates implementation is exposed in the corresponding subsec-
tion (4.1), there is no pseudocode in the paper. Finally, Mean Value Coordinates
pseudocode from Ju’s paper [18] is presented. It is written for value interpolation,
but with some modifications could be adapted for mesh deformation.

Ju’s version of Mean Value Coordinates in 3D
================================
for each vertex p j with values f j

d j←
∥∥p j− x

∥∥
if d j < ε return fi

u j← (p j− x)/d j

totalF← 0
totalW← 0
for each triangle with vertices p1, p2, p3 and values f1, f2, f3

li←‖ui+1−ui−1‖ // for i = 1,2,3
θ ← 2arcsin[li/2]
h← (∑θi)/2
if (π - h < ε)

//x lies on t, use 2D barycentric coordinates
wi← sin[θi]di−1di+1

return (∑wi fi)/(∑wi)

ci← (2sin[h]sin[h−θi])/(sin[θi+1]sin[θi−1])−1

si← sign[det[u1,u2,u3]]
√

1− c2
i

if ∃i, si ≤ ε

// x lies outside t on the same plane, ignore t
continue

wi← (θi− ci+1θi−1− ci−1θi+1)/(disin[θi+1]si−1)

totalF+= ∑wi fi

totalW+= ∑wi

fx← totalF/totalW

——————————————————–
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