Abstracting rigging concepts for a future proof framework
design

Jesus R Nieto Charlie Banks Ryan Chan
DNEG DNEG DNEG
crn@dneg.com cba@dneg.com ryc@dneg.com
PINOCCHIO
‘ RIGGING ’ ‘ RIGGING RIGGING
SCRIPT SCRIPT SCRIPT
(PYTHON LOOM API]
(T T Tt D
I e |
I & |
198 0 |:| |
BN oot |
Oz ‘Q J Oq!
| w
, O !

r

Figure 1: (left) A tentacle solver prototype built assembling simpler pieces in Loom, it’s being used in a some shows at the
moment; (right) Schema of the abstraction layers defined in Loom.

ABSTRACT

Several years ago DNEG set out to build Loom, a new rigging frame-
work in a bid to improve the performance of our Maya animation
rigs. This talk is an update on its development in the light of the
discontinuation of its original evaluation back-end, Fabric Engine.
In particular, we describe the design choices which enabled us to
achieve a DCC agnostic rigging framework, allowing us to focus
on development of pure rigging concepts. Also how this setback
prompted us to extend the framework to properly deal with the
deformation side of rigs, targeting memory efficiency, GPU/CPU
memory interaction and high-end performance optimizations.

CCS CONCEPTS

« Computing methodologies — Computer graphics; Anima-
tion;

KEYWORDS

Rigging, Framework, Deformation, Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DigiPro ’18, August 11, 2018, Vancouver, BC, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5895-8/18/08...$15.00
https://doi.org/10.1145/3233085.3233088

ACM Reference Format:

Jesus R Nieto, Charlie Banks, and Ryan Chan. 2018. Abstracting rigging
concepts for a future proof framework design. In DigiPro ’18: The Digital
Production Symposium, August 11, 2018, Vancouver, BC, Canada. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3233085.3233088

1 INTRODUCTION

Following on from the work presented in [Nieto et al. 2016], over
the past two years we have been developing a rigging framework
focused on delivering performance, flexibility, agility and scalabil-
ity. Although our original focus was performance, thanks to the
introduction of parallel evaluation in Maya 2016, this was no longer
a critical factor. Instead, we shifted our attention to agility: we
wanted to be able to deploy new features incrementally and achieve
fast turnaround times to address short-term show requirements,
while still retaining the ability to experiment with up-and-coming
technologies.

To achieve this, a key element was to design a platform-agnostic
framework that allows us to develop meaningful rigging concepts
and foster good rigging practice independently of the underlying
implementation details of both the host DCC and the evaluation
back-end. Such abstract rigging concepts allow us to describe a rig
in terms of behaviours and mathematical relationships, as a series
of interrelated operators modifying datasets.

Each of those operators can be represented as a node in a graph
and the relations between those operators as edges in the graph.
Several operators and their relationships can be grouped into a
single, complex operator, culminating with an entire rig as a single
operator. This concept of modularity, common to many applications,
is the foundation of our rig definition. We call this framework Loom.

https://doi.org/10.1145/3233085.3233088
https://doi.org/10.1145/3233085.3233088

DigiPro '18, August 11, 2018, Vancouver, BC, Canada

2 RIGGING CONCEPTS DEVELOPMENT

Based on this we can design a library of operators for use in our rigs,
from fundamental mathematical tools like matrix multiplication
to more advanced operators such as a tentacle solver (Figure 1).
Each of these operators is defined as a node with in/out connectable
attributes, which can also be interpreted as a programmatic function
and its parameters, with the data types associated with them. This
definition forms our first layer of abstraction. Rather than working
with locators or joints, we define kinematic relations in terms of
matrices, mathematical constraints and complex solvers.

Operators can be implemented independently of any DCC, using
any underlying technology, and later be integrated into a partic-
ular DCC if we provide the relevant data type conversions from
that DCC to our framework. This modular approach allows us
to develop different operators little by little and integrate them
with other elements in the DCC until the whole framework is in
place. Unfortunately, the conversion of data comes at a cost as it
increases evaluation time, but the modularity greatly facilitates
code maintenance, reusability and automated testing.

The creation of rigs in a production environment needs to be
scriptable. We use our in-house modular rigging system - Pinoc-
chio - in order to do so, but it previously relied entirely on Maya
commands, so portability was an issue. We therefore added another
layer of abstraction written in Python. It provides an API for cre-
ating Loom graphs, so that rigs can be built in any DCC from the
same description.

These two layers of abstraction combined have allowed us to
survive to the discontinuation of Fabric Engine, our evaluation back-
end: while the development team works on migrating operators
from Fabric to a new technology, artists can still work using the
abstract rigging concepts provided by Loom. Figure 1 shows the
final structure of our framework. Pinocchio will be using the python
Loom API to create graphs in a similar way [Rose et al. 2013] does.

2.1 Data Flow Dependency Graph (DFDG)

Until this point we have described our previous work in [Nieto et al.
2016]. We now propose to look at the rig as a Data Flow Graph
where the edges define how the data is traveling along the graph.
There are three kind of nodes: data sources which inject data into
the graph (eg, geometry imports...), operators that process that data,
and destination nodes which render or export it. This flow of data
establishes the basis of a procedural rig.

The data can be accessed or previewed at different points of the
process, as a snapshot of the input/output of a given node. This is
quite similar to the concepts behind Houdini’s node graph but quite
foreign to Maya, which makes us quite optimistic as we’re forming a
bridge between the different applications. A less encouraging point
is that it has serious implications in the way those rigs are designed
and how it affects the artists’ workflow. In the next section we
briefly discuss the rigging mind-set required to use these concepts.

Another important aspect is the granularity of the data as it
travels along the graph, this is defined by the Data Flow Dependency
Graph. From this graph we can really optimize how the large data
sets are processed later at implementation level. Take for instance
the geometries, the basic ingredient in any deformation graph, we

Jesus R Nieto, Charlie Banks, and Ryan Chan

might want to manage the data differently for operators that affect
only points, normals or any other element defined in the geometry.

At this point we can further break down the definition of a com-
plex data structure into two types of components: immutable (static
data) and mutable (dynamic data). Given an object, for instance a
polygon mesh, its static components will be centralised and shared
across nodes in the graph (topology and uvs), while its dynamic data
will be flowing through the graph and represent different states of
the object as versioned copies of the dynamic data (point positions).
This approach enables a whole range of optimizations on the use
of memory and performance.

2.2 Tackling the Invisible Transform

Not all riggers, whether junior or senior, are familiar with mathe-
matical concepts. This is problematic when approaching rigging
with Loom as, for instance, it favours the use of matrices instead of
Maya transforms. It can be hard for an artist to visualise a matrix
in their scene when there is no Maya shape to represent it in the
viewport.

The workflow architecture of Maya differs to ones such as Nuke
and Houdini precisely in this aspect. Maya is built with the mind-
set that we want to see and have access to all items in the scene
at any given time, this is provided to us by having different types
of shape nodes to represent certain objects (locators, meshes, etc).
In software like Houdini, these objects are purely represented by
a flow of data from node to node, and Houdini provides us with
the node editor to allow artists to select which part of the graph
they want to visualise in the scene. When they are finished with
their work, all they want to do is select the final output node and
visualise the final result in the scene, they don’t care about the
intermediate steps any more.

With Loom, we are attempting to move Maya away from the
"see everything" workflow and more towards the "see only what
you want to see" workflow, but without the right toolset it can be
difficult for riggers to adjust to this new design. We developed a
node graph editor as the first step in bridging the gap that riggers
need to cross in order to adopt this new way of working.

3 DEFORMATION FRAMEWORK

In our previous work we applied Loom mainly to solve the kine-
matics side of the rig. As a following step we applied the same
concepts to deformation but unfortunately Loom fell short, mainly
when Maya provided a strong GPU deformation pipeline in 2016
[Autodesk 2016].

There are several factors that makes Maya fast when deforming
on the GPU, but much of its success comes from the fact that its
heavy geometry data is already on the GPU when the render step
kicks in. Communication between CPU and GPU is a serious bottle
neck, therefore a good mechanism to make it efficient and easy to
use is a big requirement for this kind of frameworks.

We would like to share our conclusions on this aspect and how
we achieved better performance than Maya on GPU but only using
CPU and why we consider this to be our main solution so far, de-
spite of the promising hopes GPU processing may suggest. Freeing
ourselves from Fabric Engine made this exploration possible and
allowed us to put on place a robust deformation framework based

Abstracting rigging concepts for a future proof framework design

on the concepts described in the previous sections, achieving better
performance and more efficient use of memory than our previous
version of Loom and Maya.

Figure 2 shows a comparison of a series of tests ran on differ-
ent implementations skincluster deformer. We chose this deformer
because of its simplicity and fundamental use in rigging. We imple-
mented it in OpenCL [Stone et al. 2010] (not particularly optimized),
CUDA [NVIDIA 2012] and C++ using a combination of TBB [Pheatt
2008] and ispc [Pharr and Mark 2012]. These tests were run on an In-
tel Xeon E5 3.1GHz machine (32 logical CPUs) with Nvidia Quadro
K4000 graphics card.

4000
3500
3000
2500
2000
1500
1000
< M
. |
Labl Lab2 VEX Feat

® Maya GPU m Loom CPU Loom CUDA Loom OpenCL

Figure 2: Tests ran on the different variants of a skincluster
node. The Y axis shows the time in microseconds that the
node takes to evaluate on Maya on each frame.

We ran four tests trying to show different scenarios that we
might find in our productions: Two laboratory cases: Lab1, on a
small mesh (1.5K verts) with 2 joints, and Lab2, on a big mesh
(90K verts) with 300 joints, as well as two real cases: a VFX model
(348 K verts with 146 joints) and Feature Animation model (37K
verts with 156 joints). We avoided showing Maya-CPU times in the
comparison because they are significantly higher, in the vfx case
it’s even an order of magnitude higher.

4 CONCLUSION

Beyond its feature set, performance and user adoption, the success
of a particular tool can also be measured by its ability to weather
adverse events. Our approach turned out to be a life-saver when
one of its most fundamental components was discontinued. In ad-
dition, it improves flexibility, allowing us to develop and evolve the
system in incremental steps without affecting the end user. It also
allows riggers to produce scripts directly derived from pure rigging
concepts rather than DCC specifics. Compared to our previous
workflows, they are cleaner, more modular, build quicker and result
in graphs that run faster in parallel evaluation environments.

However it does require riggers to assimilate a series of non-
trivial concepts - we are working on ways to make that learning
process smoother.

DigiPro '18, August 11, 2018, Vancouver, BC, Canada

REFERENCES

Autodesk. 2016. Using Parallel Maya. (2016). http://download.autodesk.com/us/
company/files/2016_Extension2/UsingParallelMaya.pdf

Jesus R. Nieto, Theo Facey, and Sylvain Brugnot. 2016. A Flexible Rigging Framework
for VFX and Feature Animation. In ACM SIGGRAPH 2016 Talks (SSIGGRAPH ’16).
ACM, New York, NY, USA, Article 46, 1 pages. https://doi.org/10.1145/2897839.
2927463

NVIDIA. 2012. Kepler GK110 Whitepaper. (2012). http://www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler- GK110- Architecture- Whitepaper.pdf

M. Pharr and W. R. Mark. 2012. ispc: A SPMD compiler for high-performance CPU
programming. In 2012 Innovative Parallel Computing (InPar). 1-13. https://doi.org/
10.1109/InPar.2012.6339601

Chuck Pheatt. 2008. Intel®; Threading Building Blocks. J. Comput. Sci. Coll. 23, 4
(April 2008), 298-298. http://dl.acm.org/citation.cfm?id=1352079.1352134

Rachel Rose, Mike Jutan, and John Doublestein. 2013. BlockParty 2: Visual Procedural
Rigging for Film, TV, and Games. In ACM SIGGRAPH 2013 Talks (SSIGGRAPH ’13).
ACM, New York, NY, USA, Article 8, 1 pages. https://doi.org/10.1145/2504459.
2504469

J. E. Stone, D. Gohara, and G. Shi. 2010. OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Computing in Science Engineering 12, 3
(May 2010), 66-73. https://doi.org/10.1109/MCSE.2010.69

http://download.autodesk.com/us/company/files/2016_Extension2/UsingParallelMaya.pdf
http://download.autodesk.com/us/company/files/2016_Extension2/UsingParallelMaya.pdf
https://doi.org/10.1145/2897839.2927463
https://doi.org/10.1145/2897839.2927463
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.1109/InPar.2012.6339601
http://dl.acm.org/citation.cfm?id=1352079.1352134
https://doi.org/10.1145/2504459.2504469
https://doi.org/10.1145/2504459.2504469
https://doi.org/10.1109/MCSE.2010.69

	Abstract
	1 Introduction
	2 Rigging concepts development
	2.1 Data Flow Dependency Graph (DFDG)
	2.2 Tackling the Invisible Transform

	3 Deformation framework
	4 Conclusion
	References

